

 Navigation

 	
 index

 	
 next |

 	Platter 0.1 documentation

Platter

Platter is a tool for Python that simplifies deployments on Unix servers.
It’s a thin wrapper around pip, virtualenv and wheel and aids in creating
packages that can install without compiling or downloading on servers.

Why would you want to use it?

	fastest way to build and distribute Python packages in an ecosystem
you control. With the built-in caching we have seen build time
improvements from 400 seconds down to 20 seconds for releases with no
version changes on dependencies.

	no need to compile or download anything on the destination servers you
distribute your packages to. Everything (with the exception of the
interpreter itself) comes perfectly bundled up.

	100% control over your dependencies. No accidental version mismatches
on your servers (this includes system dependencies like setuptools,
pip and virtualenv).

You can get the tool directly from PyPI:

$ pip install platter

To create a platter distribution all you need is this:

$ platter build /path/to/your/python/package

Once this finishes, it will have created a tarball of the fully built
Python package together will all dependencies and an installation script.
You can then take this package and push it to as many servers as you want
and install it:

$ tar -xzf package-VERSION-linux-x86_64.tar.gz
$ cd package-VERSION-linux-x86_64
$./install.sh /srv/yourpackage/versions/VERSION
$ ln -sf VERSION /srv/yourpackage/versions/current

Documentation Contents

	Why Platter?
	Platter Operation

	Supporting Automated Deployments

	Why Not …?

	Quickstart
	Building Platter Packages

	Installing Platter Packages

	Customizing Builds
	Virtualenv and Wheel Pinning

	Specifying The Python Interpreter

	Passing pip Options

	Extra Requirements

	Custom Build Scripts

	Automation with Platter
	Automated Building

	Automated Installing

	Frequently Asked Questions
	Can I use it on a Plane?

	Where are Wheels Cached?

	How Can I Clean the Cache?

	Is the Cache Safe?

Miscellaneous Pages

	Platter Changelog
	Version 1.0

	License
	License Text

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Why Platter?

Platter is not the first software of it’s kind that tries to help you with
Python deployments. The main difference between platter and alternative
solutions is that platter tries to diverge as little from common
deployment scenarios and by providing the highest amount of stability and
speed possible. Changes to the Python packaging infrastructure will not
affect platter based deployments.

See also the the why-not headline for some differences with
alternatives.

Platter also places a lot of emphasis on automation. Both the build and
the installation process provides a lot of helpers for automatic usage
through assisting tools.

Platter Operation

Platter distributions are based on Python wheels. It creates wheels for
all dependencies of a Python package (including the package itself) and
bundles it together with a installation script. That script then can
create a brand new virtualenv and installs all dependencies into it.

This ensures that both the version of the system dependencies (setuptools,
pip and wheel) as well as the versions of your own packages are 100%
predictable. It never uses any packages that naturally come with the
target operating system.

For as long as the platter distribution is installed on a compatible
version of Unix it will install correctly without having to download or
compile any Packages.

Supporting Automated Deployments

Platter supports the creation of automated deployments. You can use
platter to create a python distribution on your build server, then
download the tarball and distribute it across all target machines.

You only need to ensure that you use the same major version of Python on
all machines (for instance 2.7.x or 3.4.x).

Why Not …?

Platter is hardly the first package that tries to help with deployments.
And it’s also not the last one that there will be. In fact, there is a
good chance Platter might not be the tool for you.

Pex

A popular deployment tool for Python is Twitter’s pex [https://pex.readthedocs.org/en/latest/]. Platter and pex have very
little in common other than that they are both intended for deploying
things. Pex can be compared to jar files in Java. They contain an
application in its entirety together with a virtualenv and provide various
ways to interact with the contained application.

Pex is perfect for things such as command line applications that are
written in Python, but also for various deployment scenarios that go above
that.

Platter on the other hand isn’t anywhere this fancy. Platter has two
primary goals: be fast and be simple. Platter acknowledges that there are
more things in an application than Python code and things that can execute
from zipfiles. As such upon installation it just places a virtualenv on
the file system and anything contained within works as normally. This is
very useful when an application also needs to ship other files (such as
config files, static media files, node.js modules etc.). Everything just
ends up on the filesystem and is within an arm’s reach.

venv-update

An alternative approach to fast deployment’s is Yelp’s venv-update [https://github.com/Yelp/venv-update]. It tries to make things fast by
figuring out the least amount of changes necessary to a virtualenv.
This approach works rasonably well but causes problems if you want to move
a virtualenv around. For instance it’s not ideal if you want to have a
version specific installation for quick rollbacks.

Some testing also does not reveal a noticable performance improvement of
venv-update over platter.

Docker

Platter and Docker are good friends, but one does not replace the other.
It makes a lot of sense to install a platter distribution into a docker
container but it’s probably not the best idea to use Docker alone. The
reason for this is that Platter allows you to isolate the process of
building and deploying, keeping the final server clean of unnecessary
development dependencies (compilers etc.). It also means that you can
disconnect your final deployment container entirely from the internet for
security reasons. From the start.

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Quickstart

To create platter packages you need an installation of Python 2.7. Note
that platter does support the creation of Python 3 packages but itself is
running on 2.x only.

Platter can be installed into a virtual environment with pip:

$ virtualenv venv
$./venv/bin/pip install platter

It’s recommended to install platter into its own virtualenv as it has
its own dependencies that might otherwise interfere with your system.
However all packages build with platter are themselves created in a
separate virtualenv.

Building Platter Packages

In order to create a platter package you need a setuptools based
distribution. This means you need to have a setup.py file for your
package. If you do not have one, consult the setuptools documentation [https://pythonhosted.org/setuptools/] for more information.

To then create a distribution all you need to do is to invoke platter
build with the path to your package:

$ platter build /path/to/yourpackage

This will download all dependencies, compile all extension modules and
pack them up. The resulting artifact will be created in a folder called
dist in the current directory.

Alternatively you can also instruct platter to not create a final tarball
and to instead just create a folder with all files:

$ platter build --format=dir /path/to/yourpackage

Installing Platter Packages

Once you have created such a platter package you can distribute it to
different servers and install it there. Inside the tarball there is an
install script install.sh which will install the platter package into
a fresh and isolated virtualenv. Note that virtualenv itself is packaged
up together in the platter tarball and the system version will not be
used.

To install the package you can do something like this:

$ tar -xzf package-VERSION-linux-x86_64.tar.gz
$ cd package-VERSION-linux-x86_64
$./install.sh /srv/yourpackage/versions/VERSION
$ ln -sf VERSION /srv/yourpackage/versions/current

Note that platter tarballs have a lot of support for automatic
deployments. For more information see Automation with Platter.

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Customizing Builds

The default behavior of platter is to create a package that contains the
following structure:

yourapp-<VERSION>-<PLATFORM>/
 PACKAGE
 VERSION
 PLATFORM
 info.json
 install.sh
 data/
 yourapp-<VERSION>-<PLATFORM>.whl
 yourdependency-<VERSION>-<PLATFORM>.whl
 virtualenv.py
 ...

For your package and all of the dependencies a wheel is created and placed
in the data folder. Next to the data folder there are some useful files
that contain meta information that is useful for automation (see
Automation with Platter).

The package is build out of the setup.py file that you created for your
project.

Virtualenv and Wheel Pinning

The version of virtualenv, setuptools and wheel that is used for building
this is automatically discovered by default. It can however be explicitly
provided on the command line in case you encounter a bug with the current
version or the upgrade is incompatible with what you expect:

$ platter build --virtualenv-version VER ./package
$ platter build --wheel-version VER ./package

Specifying The Python Interpreter

By default the interpreter that is used in the virtualenv of platter is
used. If you want to build for a different version (for example Python 3)
you can provide it explicitly:

$ platter build -p python3.4 ./package

Passing pip Options

By default pip will execute without any extra arguments when building
wheels. There are two ways to pass extra arguments to pip. The first is
to set environment variables. These will also be used by the pip process
that platter launches. The second option is to pass them on the command
line. For instance if you want to change the pip cache you can use this
command:

$ platter build --pip-option='--cache-dir=.cache' ./package

Extra Requirements

By default the dependencies are pulled from the setup.py file. In
some circumstances it is a good idea to define extra dependencies in a
requirements file. This is useful for instance if you have optional
dependencies like database drivers that only apply for the production
deployment but are not a strict requirement for the package itself.

In that case the --requirements (or -r) flag comes in useful. It
can point to a requirements file:

$ platter build -r requirements.txt ./package

Custom Build Scripts

While platter is perfectly capable of creating Python distributions, it
might encounter problems if you also want to ship other things with your
application that are not native to the Python ecosystem. A good example
for this is your application also wants to install some node-js modules
into the virtualenv for instance.

In this case you can provide a custom pre-build or post-build script that
is executed before or after the regular build and before packaging up. It
can add additional data to the archive and also emit commands that end up
in the install script.

The script needs to be executable and is invoked with some environment
variables. The following environment variables exist:

	Variable
	Description

	HERE
	The path of the root folder in the archive. This
is the folder where the install script ends up in
and the parent folder of the data directory. This
is where you can place additional metadata for
instance. This is also guarnateed to be the
working directory of the script.

	DATA_DIR
	The path of the bundled data folder in the
archive. This is useful when you want to add more
data into the data directory.

	SOURCE_DIR
	The path of the source directory. This is the
directory of the Python package (the parent folder
of the setup.py file).

	SCRATCHPAD
	A temporary folder provided for the script which
is deleted after the execution. This is useful
when you need to temporarily create files.

	INSTALL_SCRIPT
	The path to a auxilary installation script. You
can echo install commands to this path and they
are added to install.sh automatically.

	VIRTUAL_ENV
	The path to the virtual env that has been used for
building the package. This can come in useful
when you need to start a python interpreter or
launch an executable in the venv. Note that the
virtualenv is also guarnateed to be active.

The variables HERE, DATA_DIR and VIRTUAL_ENV are also
available in the install script.

The post build script can be provided to the build command with the
--postbuild-script parameter:

$ platter build --postbuild-script=build.sh ./package

Likewise pre-build scripts can be provided:

$ platter build --prebuild-script=prebuild.sh ./package

An example build script that ships a npm module in the virtualenv can
look like this:

#!/bin/bash
set -eu

(cd "$DATA_DIR"; npm install --production uglify-js)

cat << "EOF" >> "$INSTALL_SCRIPT"
cp -R "$DATA_DIR/node_modules" "$VIRTUAL_ENV"
ln -s "../node_modules/.bin/uglifyjs" "$VIRTUAL_ENV/bin"
EOF

This will install a node executable into the virtualenv and then link the
executable into the virtualenv’s bin folder. What’s piped into the
$INSTALL_SCRIPT is added as commands to the install.sh script.
Note that the double quoting of EOF ("EOF") disables the
interpolation so the variables are expanded at installation time, not at
build time!

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Automation with Platter

Platter is built with automation in mind. There are a handful of tools
you can use platter together with to make automated deployments a reality.

Automated Building

To automate the building process we recommend Fabric [http://www.fabfile.org/]. Fabric can be used to upload the source
artifacts on a build server, then invoke the building process there and to
fetch down the resulting build artifact. This allows you to trigger a
build from any machine even if it does not have the correct architecture
or operating system.

You will need fabric installed locally and a fabfile.py that looks
something like this:

import os
import tempfile
from fabric.api import task, local, run, cd, get, hosts

@task
@hosts('my-build-server-hostname')
def build(rev='HEAD'):
 # ask git to create an archive for the right version.
 tmp = tempfile.mktemp(suffix='.tar.gz')
 local('git archive "%s" | gzip > "%s"' % (rev, tmp))

 # upload that archive to a temporary folder
 buildtmp = '/tmp/build-%s' % os.urandom(20).encode('hex')
 put(tmp, '%s/src.tar.gz' % buildtmp)

 # In that folder
 with cd(buildtmp):
 # extract the uploaded archive
 run('tar xzf src.tar.gz')
 # and invoke platter to build it
 run('/path/to/venv/bin/platter build .')
 # then download the archive and place it in `dist`
 local('mkdir -p dist')
 get('dist/*.tar.gz', 'dist')

 # Clean up
 run('rm -rf %s' % buildtmp)

This example requires a few things:

	in this case we use git as source control system. If you use
something else you will need to adjust the code accordingly.

	platter is installed on the build server into /path/to/venv into a
virtualenv. You can obviously adjust this.

To build the package you can then run this:

$ fab build

Or to build a specific version:

$ fab build:rev=1.0-rc1

The resulting build artifact will end up in the dist directory next to
the fabfile.

Automated Installing

For automated installation the archive can be placed on a server,
extracted and installed. The usually recommended way for this is to
extract the package to a version specific folder and to then symlink the
virtualenv to an alias.

This is easy to accomplish because the tarball generated by platter
contains metadata that can be used by tools. For instance it contains a
file named VERSION with the version number.

Here an example fabfile.py which can upload a package to hosts:

import os
from fabric.api import task, put, run, cd

@task
def deploy(archive=None):
 # If not archive is provided, we use the 'last' one
 if archive is None:
 archive = os.path.join('dist',
 sorted(os.path.listdir('dist'))[-1])

 # Uplaod the archive and make some temporary space in /tmp
 put(filename, '/tmp/yourapp.tar.gz')
 run('rm -rf /tmp/yourapp && mkdir -p /tmp/yourapp')

 # Now enter the temporary folder
 with cd('/tmp/yourapp'):
 # Extract the archive, throwing away the toplevel folder
 run('tar --strip-components=1 -xzf /tmp/yourapp.tar.gz')

 # Ask for the version
 version = str(run('cat VERSION'))

 # Install into a version specific directory
 run('./install.sh /srv/yourapp/versions/%s' % version)

 # Create a symlink for the current version
 run('ln -sf %s /srv/yourapp/versions/current' % version)

 # Clean up the mess
 run('rm -rf /tmp/yourapp /tmp/yourapp.tar.gz')

You can then deploy an archive trivially:

$ fab -H myserver deploy

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Frequently Asked Questions

These are some questions that came up about the library.

Can I use it on a Plane?

Platter will automatically use two levels of caching. The first level of
caching is done by pip which will automatically cache downloaded packages
in its local download cache. This allows pip to not download source
archives if it has already downloaded them. This still needs internet
access however. The second level of caching is the caching of entire
pre-compiled wheels. Platter by default will place wheels in a wheel
cache. It will still contact the internet to check for updates according
to the version specification but you can disable this behavior by passing
--no-download to the build command.

Where are Wheels Cached?

This depends on your operating system:

	Operating System
	Path

	Linux
	~/.cache/platter

	OS X
	~/Library/Caches/platter

	Windows
	%LOCALAPPDATA%/platter/Cache

How Can I Clean the Cache?

Either delete that folder yourself or run platter clean-cache.

Is the Cache Safe?

The cache is not particularly safe if you use multiple different Python
versions next to each other in some circumstances. Normally you should
not run into any issues except if you run different Pythons compiled
against different libc’s or unicode versions.

In that case it’s recommended to use different cache paths for different
incompatible interpreters. You can override the cache path by passing
--wheel-cache=/path/to/the/cache to the build command.

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Platter 0.1 documentation

Platter Changelog

This contains all major version changes between Platter releases.

Version 1.0

(no codename yet, release date to be decided)

	Initial release

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Platter 0.1 documentation

License

Platter is licensed under a three-clause BSD License. It basically means:
do whatever you want with it as long as the copyright in Platter sticks
around, the conditions are not modified and the disclaimer is present.
Furthermore, you must not use the names of the authors to promote derivatives
of the software without written consent.

License Text

Copyright (c) 2015 by Armin Ronacher.

Some rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Platter 0.1 documentation

Index

 Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/platter@2x.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Platter 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Armin Ronacher.
 Created using Sphinx 1.2.2.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/platter.png

